

Vandar® 2500

Celanese Corporation - Polybutylene Terephthalate

Monday, November 4, 2019

· Good Toughness

Genera	Info	rm	ation	
Genera	ши		auoi	ı

Product Description

RoHS Compliance

Vandar 2500 is an unfilled polyester alloy which exhibits excellent toughness and impact strength. It is specially designed to offer excellent chemical resistance, good colorability and dimensional stability.

· Good Dimensional Stability

General

Material Status	Commercial: Active		
Availability	 Africa & Middle East Asia Pacific	EuropeLatin America	North America

Features

• Good Colorability

• Good Impact Resistance

Chemical Resistant

· Contact Manufacturer

ASTM	1 &	ISO	Pro	perties	1

Physical	Nominal Value	Unit	Test Method
Density	1.25	g/cm³	ISO 1183
Melt Mass-Flow Rate (MFR) (250°C/5.0 kg)	13	g/10 min	ISO 1133
Molding Shrinkage			ISO 294-4
Across Flow	1.7 to 2.2	%	
Flow	1.7 to 2.2	%	
Water Absorption (Saturation, 73°F)	0.45	%	ISO 62
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus	210000	psi	ISO 527-2/1A
Tensile Stress (Yield)	5080	psi	ISO 527-2/1A/50
Tensile Strain (Yield)	5.0	%	ISO 527-2/1A/50
Nominal Tensile Strain at Break	> 50	%	ISO 527-2/1A/50
Flexural Modulus (73°F)	218000	psi	ISO 178
Flexural Stress (73°F)	7250	psi	ISO 178
Impact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength			ISO 179/1eA
-22°F	4.3	ft·lb/in²	
73°F	42	ft·lb/in²	
Charpy Unnotched Impact Strength			ISO 179/1eU
-22°F	80	ft·lb/in²	
73°F	97	ft·lb/in²	
Notched Izod Impact Strength (73°F)	No Break		ISO 180/1A
Hardness	Nominal Value	Unit	Test Method
Rockwell Hardness (M-Scale)	104		ISO 2039-2
Thermal	Nominal Value	Unit	Test Method
Heat Deflection Temperature (66 psi, Unannealed)	257	°F	ISO 75-2/B
Heat Deflection Temperature (264 psi, Unannealed)	122	°F	ISO 75-2/A
Glass Transition Temperature ²	158	°F	ISO 11357-2
Melting Temperature ²	437	°F	ISO 11357-3
CLTE - Flow	7.2E-5	in/in/°F	ISO 11359-2
CLTE - Transverse	7.4E-5	in/in/°F	ISO 11359-2

Vandar® 2500

Celanese Corporation - Polybutylene Terephthalate

Processing Information			
Injection	Nominal Value Unit		
Drying Temperature	248 to 266 °F		
Drying Time	4.0 hr		
Suggested Max Moisture	0.020 %		
Hopper Temperature	68 to 122 °F		
Rear Temperature	446 to 464 °F		
Middle Temperature	455 to 482 °F		
Front Temperature	455 to 482 °F		
Nozzle Temperature	464 to 500 °F		
Processing (Melt) Temp	455 to 500 °F		
Mold Temperature	149 to 205 °F		
Injection Rate	Moderate-Fast		

Feeding zone temperature: 230 to 240°C Zone4 temperature: 240 to 260°C Hot runner temperature: 250 to 260°C

Notes

¹ Typical properties: these are not to be construed as specifications.

² 10°C/min